論文名稱: | 以二維影像輪廓資料重建三維物體模型 |
| Reconstruction of a 3D Object Model Using 2D Image Contours Data |
研究生: | 郭江禹 Jiang-Yu Guo |
指導教授: | 陳美勇 Mei-Yung Chen |
學位類別: | 碩士(Master) |
學校名稱: | 國立臺灣師範大學 |
記錄編號: | GN0696730043 |
系所名稱: | 機電科技研究所 |
畢業學年度: | 97 |
語文別: | 中文 |
關鍵字: | 二維影像輪廓 2D Image Contours |
| 圖學投影原理 Principle of Graphics Projection |
| 數位影像處理 image processing |
| 三維重建 Three-Dimensional Reconstruction |
全文說明: | (本論文20140731公開) |
| 電子全文 |
|
論文頁數: | 94 |
摘要: | 本論文研究之目的是建立一套自動化物體模型重建系統,並發展利用二維影像輪廓來重建三維物體模型之技術,藉由二維影像輪廓的建立,使物體能夠呈現出三維立體的模型,可應用於醫學物理療法中,例如:核磁共振造影系統、核子醫學系統…等等,並可結合機械手臂系統,達到辨識與挾持物體之自動化功能。 |
| 在產生三維立體模型方法中,目前最常見到的有下列幾種:第一,最為直接的方式,是使用三維模型繪圖軟體(如:3D Maxs)來製作出三維的模型;第二,使用三維量測掃描系統,對物體直接進行掃描,透過三維空間資料,以電腦建立出三維立體模型;第三,使用攝影機拍攝,藉由所得到的二維數位影像組合,或經數位影像處理後,搭配一些演算法,並建立出三維立體模型。 |
| 本研究即採用第三種方式,來建立三維立體模型。首先,藉由投影原理的概念,以兩台CCD 攝影機,模擬出工程圖學四個象限中之第一象限的直立式投影面與水平式投影面,並且將此兩面的投影,透過本論文的演算法,把二維影像序列的座標值提取出來。並搭配OpenGL的函式,將三維的座標點連結後,即可得粗略的三維立體模型,接著佈局網格,並且進行著色與打光的技術,三維的立體模型即可完整地產生出來。 |
| 由實驗結果可得知,本研究成功地建立一套三維立體模型重建系統,利用攝影機拍攝物體外型並經過多重數位影像處理技術,將物體之三維立體模型重新建立於電腦中,用以提供機械手臂作後端處理之用。 |
| |
| This paper proposes reconstruction of a 3D object model using 2D image contours data, with building the two-dimensional image contours, so that objects can show three-dimensional model, and applied to medical physical therapy, for example: magnetic resonance imaging systems, nuclear medicine system, and so on .... And then combine with a robot which can achieves an automatic system. |
| Generated three-dimensional model approach, is currently the most commonly seen are the following: first, the most direct way is to use three-dimensional model of graphics software (such as: 3D Maxs) to produce three-dimensional model; Secondly, the use of three-dimensional measurement scanning system to scan objects directly through the three-dimensional information in order to establish a three-dimensional computer model; Third, the use of camera, obtained by two-dimensional digital imaging portfolio, or digital image processing, with Some algorithms, and the establishment of a three-dimensional model. |
| In this study, which adopts the third approach, to create three-dimensional model. First of all, by the principle of the concept of projection to the two CCD cameras, the engineering graphics simulation of the four quadrants in the first quadrant of the vertical and horizontal projection surface type, and this two-sided projection, through the papers algorithm, the two-dimensional coordinates of the image sequence extracted value. Through the OpenGL function, will link three-dimensional coordinates of points, you can get a rough three-dimensional model, then the layout of the grid, and for shading and lighting technology, three-dimensional model can be generated. |
| From the experimental results, this research establishes an automatic 3D object model reconstructed system. The system builds a 3D object model in computer by CCD camera and multiple image processes technology. The model will provide to robot using for the next stage. |
| |
論文目次: |
摘要...................................................................................Ⅰ |
|
ABSTRCAT.......................................................................Ⅱ |
|
謝誌...................................................................................Ⅲ |
|
目錄.................................................................................. Ⅳ |
|
圖目錄...............................................................................Ⅶ |
|
表目錄...............................................................................Ⅷ |
| |
|
第一章 緒論.........................................................................1 |
|
1.1前言.................................................................................1 |
|
1.2文獻回顧.........................................................................8 |
|
1.3研究動機與目的...........................................................11 |
|
1.4本論文之貢獻...............................................................13 |
|
1.5論文架構.......................................................................14 |
|
第二章 理論基礎...............................................................15 |
|
2.1數位影像基本定義.......................................................15 |
|
2.1.1影像的感應與擷取..............................................15 |
|
2.1.2單一感應器取像........................................................16 |
|
2.1.3使用長條型感應器取像............................................18 |
|
2.1.4數位影像顯像基本要素............................................19 |
|
2.1.5影像的取樣和量化的基本概念................................21 |
|
2.1.6數位影像的描繪........................................................22 |
|
2.2空間域中的數位影像增強處理...................................23 |
|
2.2.1 影像增強背景...........................................................24 |
|
2.2.2基本灰階轉換............................................................25 |
|
2.3影像負片.......................................................................26 |
|
2.4空間濾波的基礎...........................................................27 |
|
2.4.1平滑空間濾波器功能................................................29 |
|
2.4.2平滑空間濾波器........................................................30 |
|
2.5影像邊緣檢測...............................................................31 |
|
2.5.1拉普拉斯邊緣偵測(Laplacian edge detection) ...........31 |
|
2.5.2索貝爾邊緣偵測(Sobel edge detection) .....................33 |
|
2.5.3坎尼邊緣偵測(Canny edge detection) ........................34 |
|
2.6三維投影原理................................................................38 |
|
第三章 系統設計概念與配置............................................46 |
|
3.1三維重建系統設計實現目標........................................46 |
|
3.2三維重建系統架構........................................................46 |
|
3.3三維重建系統架設概念................................................47 |
|
3.4三維重建系統配置........................................................48 |
|
3.5重建系統概念上的特色................................................54 |
|
3.6三維重建系統流程描述................................................54 |
|
第四章三維模型重建系統設計原理.................................56 |
|
4.1三維重建系統前言........................................................56 |
|
4.2影像前處理及目的........................................................56 |
|
4.3三維建模架構................................................................58 |
|
4.4三維建模相關演算法....................................................69 |
|
第五章 實驗結果與討論…................................................72 |
|
5.1系統設備描述................................................................72 |
|
5.2三維重建系統架設操作流程........................................74 |
|
5.3規劃操作介面................................................................75 |
|
5.4系統建模執行結果........................................................76 |
|
5.5三維重建結果分析........................................................84 |
|
5.6三維重建系統幾何上的限制........................................84 |
|
5.7三維重建效能討論........................................................84 |
|
第六章 結論及未來展望....................................................87 |
|
6.1結論................................................................................87 |
|
6.2未來展望........................................................................88 |
|
參考文獻.............................................................................90 |
| |
參考文獻: | [1] F. Remondino, S. F. El-Hakim and A. Gruen, et al., “Turning images into 3-D models,” Signal Processing Magazine, IEEE, 2004. |
| [2] S. Y. Zhao, J. Z. Yang, L. Y. Cheng, G. J. Su, and X. H. Xu, “An Algorithm of Nonlinear Interpolation Segmentation Based on Distance Mask Applied to Human Brain 3D Reconstruction,” IEEE EMBS, pp. 37-40, Mar. 2005. |
| [3] J. Zhou, A. Das, F. Li, B. Li, “Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF,” IEEE Computer Vision and Pattern Recognition, pp. 1-8, Jun. 2008. |
| [4] P. Biber, S. Fleck, T. Duckett, “3D Modeling of Indoor Environments for a Robotic Security Guard,” IEEE Computer Vision and Pattern Recognition, pp. 124-124, Jun. 2005. |
| [5] G. M. Bone, A. Lambert, M. Edwards, “Automated modeling and robotic grasping of unknown three-dimensional objects,” IEEE Robotics and Automation, pp. 292-298, May 2008. |
| [6] Y. C. Chen, C. F. Chang, Z. N. Shen, Y. M. Chen, and H. L. Chou, “Image-Based Model Acquisition and Interactive Rendering for Building 3D Digital Archives,” IEEE Pattern Recognition , pp.248-252, 2001. |
| [7] K. C. Chen, “Image-based 3D Model Construction,” Master thesis. National Sun Yat-sen University, Taiwan, R. O. C., 2001. |
| [8] 賴景義、翁文德 編著,「逆向工程理論與應用」,全華科技圖書股份有限公司,中華民國九十三年初版。 |
| [9] K. Fujimura, Y. Oue and T. Terauchi, “Improved 3D head reconstruction system based on combining shape-from-silhouette with two-stage stereo algorithm,” Pattern Recognition, vol. 2, pp. 127-130, 2006. |
| [10] B. Arthaya, Irwan, and H. Gunawan, “Point Clouds Construction Algorithm From a Home-made Laser Scanner,” IEEE Intelligent Systems Design and Applications, Vol. 1, pp. 570-575, 26-28 Nov. 2008. |
| [11] M. W. Vannier, R. H. Knapp, D. E. Gayou, R. L. Butterfield, J. W. Larson, and N. P. Sammon, “Three-dimensional surface reconstruction for industrial computed tomography,” Applied Optics, Vol. 24, Issue 23, pp. 4075-4082, 1 Dec. 1985. |
| [12] A. Flisch, J. Wirth, R. Zanini, M. Breitenstein, A. Rudin, F. Wendt, F. Mnich, and R. Golz, “Industrial Computed Tomography in Reverse Engineering Applications,” Computerized Tomography and Image Processing, pp. 45-53, 15-17 May 1999. |
| [13] A. J. Koster, U. Ziese, A. J. Verkleij, A. H. Janssen, and K. P. de Jong, “Three-Dimensional Transmission Electron Microscopy: A Novel Imaging and Characterization Technique with Nanometer Scale Resolution for Materials Science,” The Journal of Physical Chemistry B, pp. 9368-9370, 20 Sep. 2000. |
| [14] Y. Suenaga, “3D measurement technologies for computer animation,” International Conference Computer Animation, pp. 167-174, 3-4 Jun. 1996. |
| [15] T. T. Chung, C. Y. Liao, “An integrated scanning system for reconstructing 3D color models of general objects,” International Conference Mechatronics, pp. 477-482, 10-12 Jul. 2005. |
| [16] G. Dainese, M. Marcon, A. Sarti, and S. Tubaro, “3D object modeling with a voxelset carving approach,” International Conference Image Processing, vol. 1, pp. I - 1053-1056, 11-14 Sep. 2005. |
| [17] Y. K. Zhang, Y. Xiao, “A practical method of 3D reconstruction based on uncalibrated image sequence,” International Conference Signal Processing, pp. 1368-1371, 26-29 Oct. 2008. |
| [18] N. Sun, T. Shim and M. Cao, “3D reconstruction of seafloor from sonar images based on the multi-sensor method,” International Conference Multisensor Fusion and Integration for Intelligent Systems, pp. 573-577, 20-22 Aug. 2008. |
| [19] E. Coiras, Y. Petillot, and D. M. Lane, “Multiresolution 3-D Reconstruction From Side-Scan Sonar Images,” IEEE Transactions Image Processing, Vol. 16, Issue 2, pp. 382-390, Feb. 2007. |
| [20] Terauchi T., Oue Y., and Fujimura K., “A flexible 3D modeling system based on combining shape-from-silhouette with light-sectioning algorithm,” 3-D Digital Imaging and Modeling, pp. 196–203, 13-16 June 2005. |
| [21] C. Hernández, G. Voqiatzis, and R. Cipolla, “Multiview Photometric Stereo,” IEEE Transactions Pattern Analysis and Machine Intelligence, Vol. 30, Issue 3, pp. 548-554, Mar. 2008. |
| [22] C. H. Esteban, F. Schmitt, “Silhouette and stereo fusion for 3D object modeling,” Computer Vision and Image Understanding, Vol. 96, Issue 3, pp. 367-392, Dec. 2004. |
| [23] H. Ho, “2D-3D Block Matching,” Master thesis. The University of Auckland, New Zealand, N. Z. L., 2004. |
| [24] J. R. Wu, “3D Model Acquisition Based on Shape from Silhouettes and Stereo,” Master thesis. National Chung Cheng University, Taiwan, R. O. C., 2007. |
| [25] K. M. Cheung, S. Baker and T. Kanade, “Shape-From-Silhouette Across Time Part I: Theory and Algorithms,” International Journal of Computer Vision, Vol. 62, No. 3, pp. 221-247, May 2004. |
| [26] K. S. Shreedhara, and S. P. Indira, “Construction of 3-D Objects Using 2-D Cross Sectional Data and Curves,” Advanced Computing and Communications, pp. 630-631, 2006. |
| [27] H. Nishino, H. Takagi,and S. Saga, et al.,“A virtual modeling system for intuitive 3D shape conceptualization,” Systems, Man and Cybernetics, vol. 4, pp. 6, 2002. |
| [28] H. El hafed, Z. Guennoun and A. Lichioui, “Orthographic Views Re-Projection for 3D-Object Reconstruction” Information Technology Based Higher Education and Training, pp. 454–461, 2006. |
| [29] J. Canny, “A Computational Approach to Edge Detection,” Pattern Analysis and Machine Intelligence, Vol. PAMI-8, Issue 6, pp. 679-698, Nov. 1986. |
| [30] C. Harris and M. Stephens, “A combined corner and edge detector,” The 4th Alvey Vision Conference, pp. 147-151, 1988. |
| [31] 王輔春、楊永然、朱鳳傳等 編著,「工程圖學」,全華科技圖書股份有限公司,中華民國91年。 |
| [32] R. C. Gonzalez and R. E. Woods, “Digital Image Processing 2/e,” Pearson Education, 2003. |
| [33] 繆紹綱 編著,「數位影像處理 活用-Matlab」,全華科技圖書股份有限公司,中華民國92年。 |
| [34] 吳孟儒、廖勝泰 編著,「OpenGL電腦繪圖程式設計實務」,滄海書局,中華民國90年。 |
| [35] J. D. Foley, A. V. Dam and S. K. Feiner et al., “Computer Graphics Principles and Practice 2nd,” Addison-Wesley Publishing Company, 1990. |
| |